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Abstract: In this paper we investigate a nonlocal reaction diffusion equation with potential, under Neumann bound-
ary. We obtain the complete classification of the parameters for which the solution blows up in finite time or exists
globally. Moreover, we study the blowup rate and the blowup set for the blowup solution.

Key–Words: Nonlocal diffusion, Blow up, Blowup rate, Blowup set

1 Introduction
It is well known the reaction diffusion system is the
classical model in describing the spatial-temporal pat-
ten (see, e.g.[9]). However, the Laplacian operator in
the reaction diffusion system is not sufficiently accu-
rate in modelling the spatial diffusion of the individ-
ual in some cases, especially in many biological areas
(see [8]). As stated in [8, 10], one way to overcome
this disadvantage is to introduce the following nonlo-
cal evolution equation

ut(x, t) =

∫
RN

J(x− y)(u(y, t)− u(x, t))dy. (1)

This equation and their variations, have been widely
used to model diffusion process, for example, in biol-
ogy, dislocations dynamics, etc. See, for example, [1,
5] and references therein. As stated in [5], if u(x, t)
is thought of as a density at the point x and time t and
J(x−y) is thought of as the probability distribution of
jumping from location y to location x, then the con-
volution (J ∗ u)(x, t) :=

∫
RN J(x − y)u(y, t)dy is

the rate at which individuals are arriving at x from all
other places and −u(x, t) = −

∫
RN J(x−y)u(x, t)dy

is the rate at which they are leaving location x to travel
to all other sites.

In the past decades, some works have shown that
equation (1) shares many properties with the classical
heat equation

ut −∆u = 0

such as bounded stationary solutions are constants, a
maximum principle holds for both of them, etc. How-
ever, there is no regularizing effect in general. So it is

an interesting topic to compare the properties of solu-
tions of such nonlocal diffusion equation with corre-
sponding local diffusion cases, see [11, 12] and refer-
ences therein.

Motivated by above works, we devote our atten-
tion to the blowup analysis of the following nonlocal
diffusion equation

ut(x, t) =

∫
Ω
J(x− y)(u(y, t)− u(x, t))dy

+a(x)up(x, t)− b(x)uq(x, t),

x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω. (2)

Here J : RN → R is nonnegative, bounded , sym-
metric radially and strictly decreasing function with∫
RN J(z) = 1, p and q are both positive constants.
Ω is a bounded connected and smooth domain. And
the potential functions a(x), b(x) are both in C1(Ω),
satisfy a(x) ≥ A1 , b(x) ≥ B1 for some positive
constants A1, B1 , respectively. We take the initial
datum, u0(x), nonnegative, nontrivial and bounded.
As we will see through these pages, this equation will
share many properties with corresponding local diffu-
sion problems.

Note that in our problem (2) we are integrating in
Ω. In this case, we are imposing the condition that the
diffusion takes place only in Ω. No individual may
enter or leave the domain. This is so called Neumann
boundary conditions, see [4]. For more study about
the nonlocal diffusion operator, we refer to [2, 3] and
references therein.

A solution of (2) is a function u(x, t) ∈
C1([0, T );C(Ω)) satisfying (2). As usual, we say the
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solution of problem (2) u blows up in finite time if
there exists a T < +∞ such that ∥ u(x, t) ∥L∞< +∞
for all t ∈ [0, T ) and

lim
t→T

∥ u(x, t) ∥L∞= +∞.

For the blowup properties of the solution to prob-
lem (2), we have following results. Firstly, we de-
termine the complete classification of the parameters
for which the solution blows up in finite time or exists
globally.

Theorem 1 (i) If p > max{q, 1}, then the equation
(2) with large initial data have solutions blowing up in
finite time, while the solutions of (2) with small initial
data exist globally.

(ii) If p ≤ max{q, 1}, then all solutions of (2)
are global. Moreover, if p < q or p = q and
maxx∈Ω (a(x) − b(x)) ≤ 0, all solutions are uni-
formly bounded, while if p = q and minx∈Ω (a(x) −
b(x)) > 0, there exist unbounded global solutions.

Once we have obtained the values of the parame-
ters for which blowup occurs, the next step is to con-
cern the blowup rate. To this end, we suppose that

(H) suppJ(x) ∩ suppu0(x) ̸= Ø.

Theorem 2 Let p > max{q, 1} and u(x, t) be a so-
lution of (2) blowing up at time T . Then

lim
t→T

(T−t)
1

p−1 max
x∈Ω

u(x, t) = ((p−1)max
x∈Ω

a(x))
− 1

p−1 .

(3)

Remark 3 Note that the blowup rate here depends on
the potential. This is different from the usual local
diffusion case.

Next we consider the spacial location of the
blowup set. As usual, the blowup set of solution
u(x, t) is defined as follows:

B(u) = {x ∈ Ω̄ ; there exist (xn, tn) → (x, T ) such

thatu(xn, tn) → ∞}.

where T is the maximal existence time of u. For a
general domain Ω we can localize the blowup set near
any pint in Ω just by taking an initial condition being
very large near that point and not so large in the rest
of the domain. This is the following result.

Theorem 4 Let p > 2. For any x0 ∈ Ω and ε > 0,
there exists an initial data u0 such that the corre-
sponding solution u(x, t) of (2) blows up at finite time
T and its blowup set B(u) is contained in Bϵ(x0) =
{x ∈ Ω̄ ; ∥ x− x0 ∥< ϵ}.

Considering the radial symmetric case, we have
the following result.

Theorem 5 Let p > max{q, 2} and Ω = BR =
{|x| < R}. If the potential functions a(x), b(x) are
radial symmetric and satisfy a′(r) ≤ 0, b′(r) ≥ 0.
And the initial data u0 ∈ C1(B̄R) is a radial nonneg-
ative function with a unique maximum at the origin,
that is, u0 = u0(r) ≥ 0, u′0(r) < 0 for 0 < r ≤ R,
u′(0) = 0 and u′′0(0) < 0, then the blowup setB(u) of
the solution u of (2) consists only of the original point
x = 0.

The remainder of this paper is organized as fol-
lows. In Section 2, we give the existence and unique-
ness of the solutions as well as the comparison prin-
ciple. In section 3, we prove the blowup and global
existence condition. And then we prove the blowup
rate and blowup set results in Section 4 and section 5,
respectively. In Section 6, we will give some numer-
ical experiments to demonstrate our results. And the
last section is devoted to our conclusion.

2 Existence, Uniqueness and Com-
parison Principle

We begin our study of problem (2) with a result of
existence and uniqueness of continuous solution and
comparison principle.

Firstly, existence and uniqueness of solution is a
consequence of Banach’s fixed point theorem. We
look for u ∈ C1([0, T );C(Ω)) satisfying (2). Fix
t0 > 0, and consider the Banach space Xt0 =
C1([0, T );C(Ω)) with the norm

∥ ω ∥Xt0
= max

0≤t≤t0
∥ ω(·, t) ∥L∞(Ω) +

max
0≤t≤t0

∥ ωt(·, t) ∥L∞(Ω) .

We define the following operator T : Xt0 → Xt0

Tω0(ω)(x, t)

= ω0(x) +

∫ t

0

∫
Ω
J(x− y)(ω(y, s)− ω(x, s))dyds

+

∫ t

0

(
a(x) | ω |p−1 ω(x, s)

−b(x) | ω |q−1 ω(x, s)
)
ds.

We could prove the solution to (2) is a fixed point
of operator T in a convenient ball of Xt0 . Thus, we
have the following result.

Theorem 6 For every u0 ∈ C(Ω) there ex-
ists a unique solution u of (2) such that u ∈
C1([0, T );C(Ω)) and T (finite or infinite) is the max-
imal existence time of solution .
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In order to prove Theorem 6, we need the following
lemma.

Lemma 7 The operator Tω0 is well defined, mapping
Xt0 into itself. Moreover, let ω0, z0 ∈ C(Ω) and
ω, z ∈ Xt0 . Then there exists a positive constant
C = C(p, q, ∥ ω ∥Xt0

, ∥ z ∥Xt0
, ∥ J ∥∞, Ω) such

that

∥ Tω0(ω)− Tz0(z) ∥Xt0

≤∥ ω0 − z0 ∥L∞(Ω) +Ct ∥ ω − z ∥Xt0
. (4)

Thus, Tω0 is a strict contraction if t0 is small enough
and u0 ≡ v0.

Proof. This proof consists of several steps.
Step 1. We show that Tω0 maps Xt0 into Xt0 .

Notice that
∫
Ω J(x − y)dx ≤

∫
RN J(x)dx = 1. For

any (x, t) ∈ Ω× [0, t0] we have,

|Tω0(ω(x, t))− ω0|

≤|
∫ t

0

∫
Ω
J(x− y)(ω(y, s)− ω(x, s))dyds |

+ |
∫ t

0

(
a(x) | ω |p−1 ω(x, s)

−b(x) | ω |q−1 ω(x, s)
)
ds |

≤|
∫ t

0

∫
Ω
J(x− y)(ω(y, s)− ω(x, s))dyds |

+ |
∫ t

0

(
a(x) | ω |p−1 ω(x, s)

)
ds |

+ |
∫ t

0

(
b(x) | ω |q−1 ω(x, s)

)
ds |

≤ C1t(2 ∥ ω ∥Xt0
+ ∥ ω ∥pXt0

+ ∥ ω ∥qXt0
).

This implies Tω0 is continues at t = 0.
Similarly, for any (x, t1), (x, t2) ∈ Ω × (0, t0],

we have

|Tω0(ω(x, t1))− Tω0(ω(x, t2))|

=|
∫ t2

t1

( ∫
Ω
J(x− y)(ω(y, s)− ω(x, s))dy

+a(x) | ω |p−1 ω(x, s)

−b(x) | ω |q−1 ω(x, s)
)
ds |

≤ C2(t2 − t1)(2 ∥ ω ∥Xt0
+ ∥ ω ∥pXt0

+ ∥ ω ∥qXt0
).

Thus, Tω0 is continues for any t ∈ (0, t0].
On the other hand, the convolution

∫
Ω J(x −

y)(u(y, t)−u(x, t))dy is uniformly continuous. Thus,
Tω0 is continuous as a function of x. Therefore, we

conclude that Tω0(ω) ∈ C([0, T );C(Ω)) for any ω0 ∈
C(Ω) and ω ∈ C([0, T );C(Ω)) . Moreover, we could
easily prove that

∫
Ω J(x− y)(ω(y, t)− ω(x, t))dy +

a(x) | ω |p−1 ω(x, t) − b(x) | ω |q−1 ω(x, t) is
continues for any t ∈ (0, t0] in a similar way. That
is, Tω0 ∈ C1([0, T );C(Ω)) for any ω0 ∈ C(Ω) and
ω ∈ C1([0, T );C(Ω)). Therefore, Tω0 maps Xt0 into
itself.

Step 2. We prove the estimate (4). For any
(x, t) ∈ Ω× [0, t0], we have

|Tω0(ω(x, t))− Tz0(z(x, t))|
≤ ∥ω0 − z0∥L∞Ω

+ |
∫ t

0

(
a(x) | ω |p−1 ω − a(x) | z |p−1 z

)
ds |

+ |
∫ t

0

(
b(x) | z |q−1 ω − b(x) | ω |q−1 ω

)
ds |

+ |
∫ t

0

∫
Ω
J(x− y)

(
ω(y, s)− z(y, s)

−(ω(x, s)− z(x, s))
)
dyds

≤ ∥ω0 − z0∥L∞(Ω)

+(C3pη
p−1 + C4qζ

q−1) |
∫ t

0
(ω(x, s)− z(x, s))ds

+ | 2
∫ t

0
∥ω(·, s)− z(·, s)∥∞L (Ω)

∫
Ω
J(x− y)dyds

≤ ∥ω0 − z0∥L∞(Ω)

+(C3pη
p−1 + C4qζ

q−1 + 2K|Ω|)t∥ω − z∥Xt0
,

where η ≤ max{∥ω∥Xt0
, ∥z∥Xt0

}, ζ ≤
max{∥ω∥Xt0

, ∥z∥Xt0
}. The arbitrariness of

(x, t) ∈ Ω× [0, t0] gives the desired estimate (4).
Step 3. Finally, we prove that the operator Tω0 is

a strict contraction if t0 is small enough. To this end,
choosing t0 such that Ct0 < 1 and ω0 = z0, we have

∥Tω0(ω(x, t))− Tz0(z(x, t))∥Xt0
≤ Ct0∥ω − z∥Xt0

.

Hence it is enough to choose t0 such that Ct0 <
1/2 to obtain a strict contraction in the ball
B(u0, 2∥u0∥L∞(Ω)). The proof of Lemma 7 is com-
plete. ⊓⊔

Now we could easily prove Theorem 6 , concern-
ing the existence and uniqueness of solutions.

Proof of Theorem 6 By Lemma 7, we have that the
operator Tω0 is a strict contraction in the time inter-
val [0, t0] , the Banach’s fixed point theorem implies
that problem (2) have a unique solution in the space
Xt0 = C([0, T );C(Ω)). If ∥u∥Xt0

< +∞ , taking
u(·, t0) ∈ C(Ω) as the initial data in the problem (2)
and arguing as before, we can extend the solution up
to some interval [0, t1) for some t1 > t0. Therefore,
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we conclude that if the maximal existence time of the
solution, T , is finite time then the solution blows up
in L∞(Ω) norm.

Next, we will study the comparison principle. As
usual we first give the definition of supersolution and
subsolution.

Definition 8 A function u ∈ C1([0, T );C(Ω)) is a
supersolution of (2) if it satisfies

ut(x, t) ≥
∫
Ω
J(x− y)(u(y, t)− u(x, t))dy

+a(x)up(x, t)− b(x)uq(x, t),

u(x, 0) ≥ u0(x).

Subsolutions are defined similarly by reversing
the inequalities.

To obtain the comparison principle for problem
(2), we first give a maximum principle.

Lemma 9 Suppose that w(x, t) ∈ C1([0, T );C(Ω))
satisfies

wt(x, t) ≥
∫
Ω
J(x, y)(w(y, t)− w(x, t))dy

+ c1w(x, t), x ∈ Ω, t > 0 (5)

with w(x, 0) ≥ 0 for x ∈ Ω and
suppJ(x)

∩
suppw(x, t) ̸= Ø , c1 is a bounded

function, then w(x, t) > 0, x ∈ Ω, t > 0.

Proof. We first show w(x, t) ≥ 0 for x ∈ Ω, t >
0. Assume that w(x, t) is negative somewhere. Let
θ(x, t) = e−λtw(x, t) (λ > 0, λ ≥ 2 sup |c1|). If
we take (x0, t0) a point where θ attains its negative
minimum, there holds t0 > 0 and

θt(x0, t0) = −λe−λt0w(x0, t0) + e−λt0wt(x0, t0)

≥ e−λt0

∫
Ω
J(x0 − y)(w(y, t0)

−w(x0, t0))dy + (−λ+ c1)w(x0, t0)

> 0,

which is a contradiction. Thus θ(x, t) ≥ 0 for x ∈
Ω, t > 0. And so does w(x, t).

Now, we suppose θ(x1, t1) = 0 for some
(x1, t1), that is, θ attains its minimum at (x1, t1)
from the first step. Then w(x1, t1) = 0. As
suppJ(x)

∩
suppw(x, t) ̸= Ø, we have

θt(x1, t1) ≥ e−λt1

∫
Ω
J(x1 − y)(w(y, t1))dy

> 0.

This is a contradiction. The conclusion follows. ⊓⊔

Remark 10 From the proof of Lemma 9, w(x, t) ≥ 0
for x ∈ Ω, t > 0 is also validity when the condition
suppJ(x)

∩
suppw(x, t) ̸= Ø fails.

Lemma 11 If p ≥ 1, q ≥ 1 and u, u be super
and subsolutions to (2), respectively. Then u(x, t) ≥
u(x, t) for every (x, t) ∈ Ω× [0, T ).

Proof. Let w(x, t) = u − u, it is easy to verify that
w(x, t) satisfies (5) when p ≥ 1, q ≥ 1. We could
obtain our conclusion from Lemma 9. ⊓⊔

Remark 12 When p < 1 or q < 1 the conclusion is
also validity if u and u are bounded away from 0.

3 Blowup and Global Existence
In this section, we will analyze the blowup condition
and give the proof of Theorem 1. For convenience
of writing, we introduce the following notation. Let
A2 = maxx∈Ω a(x) , B2 = maxx∈Ω b(x). We will
use this notation in the rest of this paper.

Proof of Theorem 1 (i).We first show that if the initial
data u0(x) is large enough, solutions of (2) blow up in
finite time.

In the case of p > q > 1. Integrating equation
(2)1 in Ω and applying Fubini’s theorem, we get

d

dt

∫
Ω
u(x, t)dx =

∫
Ω
a(x)up(x, t)dx

−
∫
Ω
b(x)uq(x, t)dx (6)

Using Hölder’s inequality and noting the bound of the
potential, we could get

d

dt

∫
Ω
u(x, t)dx

≥ A1

∫
Ω
up(x, t)dx−B2|Ω|

p−q
p

(∫
Ω
up(x, t)dx

) q
p

=

(∫
Ω
up(x, t)dx

) q
p [
A1

(∫
Ω
up(x, t)dx

) p−q
p

−B2|Ω|
p−q
p

]
,

where |Ω| is assumed to be the measure of Ω. Given
positive constant m > (B2

A1
)

1
p−q and u0 ≥ m, we have

by the comparison principle that the solution u(x, t)
of problem (2) satisfies u(x, t) ≥ m. Thus

d

dt

∫
Ω
u(x, t)dx ≥

(∫
Ω
up(x, t)dx

) q
p

·(
A1m

p−q|Ω|
p−q
p −B2|Ω|

p−q
p

)
.
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Then we use Jensen’s inequality to obtain

d

dt

∫
Ω
u(x, t)dx > C

(∫
Ω
u(x, t)dx

)q

, (7)

where C is a positive constant independent of the so-
lution u. From this inequality, we could easily obtain
that u(x, t) blow up in finite time.

In the case of p > 1 ≥ q, it follows from uq ≤
u+ 1 and Jensen’s inequality that∫

Ω
a(x)up(x, t)dx− b(x)

∫
Ω
uq(x, t)dx

≥
∫
Ω
A1u

p(x, t)dx−B2

∫
Ω
uq(x, t)dx

≥ A1

∫
Ω
up(x, t)dx−B2

∫
Ω
u(x, t)dx−B2|Ω|

≥ A1|Ω|1−p
(∫

Ω
u(x, t)dx

)p

−B2

∫
Ω
u(x, t)dx

−B2|Ω|.

Substituting this inequality into (6), we obtain

d

dt

∫
Ω
u(x, t)dx

≥ A1|Ω|1−p
(∫

Ω
u(x, t)dx

)p

−B2

∫
Ω
u(x, t)dx

−B2|Ω|.

Therefore, if we take the initial data u0 large enough
such thatA1|Ω|1−p (

∫
Ω u0(x)dx)

p−B2
∫
Ω u0(x)dx−

B2|Ω| > 0, then
∫
Ω u(x, t)dx blows up in finite time.

So does u(x, t).
Next we show when the initial data u0(x) is small,

solutions of (2) exist globally.
Consider constant M . Let 0 < M ≤

(minx∈Ω
b(x)
a(x))

1
p−q . Then Mt ≥ a(x)Mp − b(x)M q.

Henceforth, if u0(x) ≤ M , M is a supersolution
of equation (2). From the comparison principle, we
know solutions of (2) are global in this case.

(ii). We only need to look for a global superso-
lution of equations (2). Indeed, it is easy to construct
spacial homogeneous global supersolution of (2). To
see this, we let u = Ceαt, where C and α are positive
constants to be determined.

For any given initial data u0, we note that u(t0) ≥
∥u0∥∞ for t0 sufficiently large and u is bounded away
from 0. Thus by the comparison principle and Remark
12, to make u be a supersolution of (2) we only need
to show the existence of C and α satisfying

a(x)Cpepαt ≤ b(x)Cqeqαt + αCeαt. (8)

If p ≤ 1 < q, for any given α, we can take C =

(A−1
2 B1)

1
p−q such that (8) holds.

If q ≤ 1 and thus p ≤ 1, we can choose C and α
satisfying α = A2C

p−1, which make (8) validity.
Next, we show all global solutions are uniformly

bounded when p < q or p = q and maxx∈Ω (a(x) −
b(x)) ≤ 0. In fact, (2) has constant supersolution u =
A whenever p < q or p = q and maxx∈Ω (a(x) −
b(x)) ≤ 0. To see this, we choose A large enough
such that

b(x)Aq ≥ a(x)Ap, A ≥ ∥u0∥∞,

which imply that u is a supersolution of (2).
At last we show there exist global unbounded so-

lutions when p = q and minx∈Ω (a(x)− b(x)) > 0.
Define function f(t) as follows.
If p = q < 1, f(t) = ((A1 − B2)(1 − p)t +

f1−p(0))
1

1−p .
If p = q = 1, f(t) = e(A1−B2)t.
It is easy to see that if f(0) ≤ maxΩ u0(x), f(t)

is a subsolution of equations (2). It is obvious that
when p < 1, f(t) is unbounded. ⊓⊔

4 Blowup Rate Estimate
In this section, we study the blowup rate and prove
Theorem 2.

Proof of Theorem 2. Let U(t) = u((x(t), t) =
maxx∈Ω u(x, t) . It is easy to see that U(t) is Lips-
chitz continuous and thus it is differential everywhere
(see [6]). From the first equality of (2) we have

U ′(t)

≤
∫
Ω
J(x(t), y)(u(y, t)− u(x(t), t))dy

+a(x(t))up(x(t), t)− b(x(t))uq(x(t), t)

≤ A2u
p(x(t), t) (9)

at any point of differentiability of U(t). Here we used
∇u((x(t), t) = 0.

Noticing that p > 1 and integrating (9) from t to
T , we obtain

max
x∈Ω

u(x, t) ≥ (A2(p− 1))
− 1

p−1 (T − t)
− 1

p−1 . (10)

Next we will establish the upper estimate. For any
(x, t) ∈ Ω× [0, T ), we have

ut(x, t) ≥ −u(x, t) + a(x)up(x, t)− b(x)uq(x, t)

= up(x, t)
(
a(x)− u−(p−1)(x, t)

−b(x)u−(p−q)(x, t)
)
.

In particular,

U ′(t) ≥ Up(t)
(
A2 − U(t)−(p−1) −B2U(t)−(p−q)

)
.
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From the lower estimate (10) we get

U ′(t)

≥ Up(t)
(
A2 −A2(p− 1)(T − t)

−B2(p− 1)
p−q
p−1 (T − t)

p−q
p−1

)
.

Integrating in (t, T ), we get

max
x∈Ω

u(x, t)

≤
(
A2(p− 1)(T − t)− A2(p− 1)2

2
(T − t)2

−B2
(p− 1)

3p−q−2
p−1

2p− q − 1
(T − t)

2p−q−1
p−1

)− 1
p−1 ,

as u(x, t) could not attain its maximum on the bound-
ary of Ω from Lemma 7 . Combining with (10), the
conclusion of Theorem 2 is proved if one take the limit
as t→ T . ⊓⊔

5 Blowup Set
Next we will concern the blowup set for the solution
to problem (2). We will first localize the blowup set
near any point in Ω just by taking an initial condition
being very large near that point and not so large in the
rest of the domain.

Proof of Theorem 4. Given x0 ∈ Ω and ε > 0, we
could construct an initial condition u0 such that

B(u) ⊂ Bε(x0) = {x ∈ Ω : ∥x− x0∥ < ε}. (11)

In fact, we will consider u0 concentrated near x0
and small away from x0.

Let φ be a nonnegative smooth function such that
supp(φ) ⊂ B ε

2
(x0) and φ(x) > 0 for x ∈ B ε

2
(x0).

Next, let

u0(x) =Mφ(x) + δ.

We want to choose M large and δ small such that (11)
holds.

First we can assume that T is as small as we need
by taking M large enough. In fact, we have

T ≤ C(Ω, p, A1, B2, φ)

M q−1
or T ≤ C(Ω, p, A1, B2, φ)

Mp−1

from the proof of Theorem 1.
Now, from the proof of blowup rate, we have

max
x∈Ω

u(x, t)

≤
(
A2(p− 1)(T − t)− A2(p− 1)2

2
(T − t)2

−B2
(p− 1)

3p−q−2
p−1

2p− q − 1
(T − t)

2p−q−1
p−1

)− 1
p−1

≤ C(T − t)
− 1

p−1 .

Henceforth, for any x ∈ Ω,

ut(x, t) =

∫
Ω
J(x, y)(u(y, t)− u(x, t))dy

+a(x)up(x, t)− b(x)uq(x, t)

≤
∫
Ω
J(x, y)u(y, t)dy +A2u

p(x, t)

≤ C(T − t)
− 1

p−1 +A2u
p(x, t),

which show that u(x, t) is a subsolution to

wt = C(T − t)
− 1

p−1 +A2w
p(t). (12)

And then, if u(x, 0) ≤ w(0), we have

u(x, t) ≤ w(t). (13)

Next, we only need to prove that a solution w to
(12) with initial value w(0) = δ remains bounded up
to t = T , provided that δ and T are small enough.

Let

z(s) = (T − t)1/(p−1)w(t), s = −ln(T − t).

Then z(s) satisfies

z′(s) = Ce−s − 1

p− 1
z(s) +A2z

p(s),

z(−lnT ) = T 1/(p−1)δ.

On the other hand, p > 2 shows that for T and δ small
(T is small if M is large), we have

CT − 1

p− 1
δT

1
p−1 +A2δ

pT
p

p−1 < 0.

So z′(s) < 0 for all s > −lnT . From this and Lemma
4.2 of [7], we know

z(s) → 0, s→ ∞.

Combining the equation verified by z we obtain that
for given positive constant γ (< 1

p(p−1)), there exists
s0 > 0 such that

z′(s) ≤ Ce−s −
(

1

p− 1
− γ

)
z(s)

for s > s0.
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Let v(s) be a solution of

v′(s) = Ce−s −
(

1

p− 1
− γ

)
v(s)

with v(s0) ≥ z(s0). Integrating this equation we get

v(s) = C1e
−s + C2e

−( 1
p−1

−γ)s
.

By a comparison argument we could get that for every
s > s0,

z(s) ≤ v(s) = C1e
−s + C2e

−( 1
p−1

−γ)s
. (14)

Now we go back to z′(s) = Ce−s− 1
p−1z(s)+ z

p(s).

We have

z′(s) +
1

p− 1
z(s) = Ce−s + zp(s),

then

(e
1

p−1
s
z(s))

′
= e

1
p−1

s
(Ce−s + zp).

Integrating form s0 to s, one could get

z(s)

= e
− 1

p−1
s
(C1 +

∫ s

s0
e

1
p−1

σ
(Ce−σ + zp)dσ)

= e
− 1

p−1
s ·

(C1 +

∫ s

s0
e
− p−2

p−1
σ
(C + eσzp)dσ). (15)

Using (14) and γ < 1
p(p−1) , we have

eszp ≤ Cp
1e

−(p−1)s + Cp
2e

−( p
p−1

−pγ−1)s → 0

as s→ +∞.
And thus from (15), we get

z(s) ≤ e
− 1

p−1
s
(C1 + C3

∫ s

s0
e
− p−2

p−1
σ
dσ)

≤ C1e
− 1

p−1
s
+ C4e

−s.

As p > 2, we have

z(s) ≤ Ce
− 1

p−1 s.

This implies that w(t) ≤ C, for 0 ≤ t < T . From the
boundedness of w and (13) we get u(x, t) ≤ w(t) ≤
C for every x ∈ Ω \Bϵ(x0), as we wished.

Next, we will consider the radial symmetric case,
that is, the proof of Theorem 5. For the convenience of
writing, we only deal with the one dimensional case,
Ω = (−l, l). The radial case is analogous, we leave
the details to the reader.

First, we prove a lemma that show if the initial
data has a unique maximum at the origin and a′(x) ≤
0 , b′(x) ≥ 0, then the solution has a unique maximum
at this point for every t ∈ (0, T ).

Lemma 13 Under the hypothesis of Theorem 5 we
have that the solution u(x, t) is symmetric and such
that ux < 0 in (0, L]× (0, T ).

Proof. Symmetry follows from uniqueness since
h(x, t) = u(−x, t) is also a solution to (2).

Denote w(x, t) = ux. Then w satisfies the fol-
lowing equation

wt(x, t)

=

∫ L

−L
J ′(x− y)(u(y, t)− u(x, t)dy)

−w(x, t)
∫ L

−L
J(x− y)dy + pa(x)up−1(x, t)w(x, t)

−qb(x)uq−1w(x, t) + a′(x)up(x, t)− b′(x)uq(x, t).

If we assume that there exists a point (x0, t0) ∈
(0, L]× (0, T ) at which w(x0, t0), we get

wt(x0, t)

=

∫ L

−L
J ′(x0 − y)u(y, t)dy + a′(x0)u

p(x0, t)

−b′(x0)uq(x0, t).
Here we used that J ′ is odd and the symmetry of u.

From this equation it is easy to obtain a contra-
diction as a′(x) ≤ 0 and b′(x) ≥ 0.

Now we are ready to prove Theorem 5.

Proof of Theorem 5. Let us perform the following
change of variables

z(x, s) = (T − t)1/(p−1)u(x, t),

s = − ln(T − t). (16)

Our remainder proof consist of two steps.
Step 1. We first prove the only blowup point that

verifies the blowup estimate (3) is x = 0. And this
shows that for x ̸= 0, z(x, s) does not converge to
Cp = (A2(p− 1))

− 1
p−1 as s→ +∞.

We conclude by contradiction. Assume that (T −
t)1/(p−1)u(x0, t) → Cp for a x0 > 0.

Let v(t) = u(0, t)− u(x0, t). Then

v′(t) =

∫ l

−l
J(−y)(u(y, t)− u(0, t))dy

−
∫ l

−l
J(x0 − y)(u(y, t)− u(x0, t))dy

+a(0)up(0, t)− a(x0)u
p(x0, t)

−b(0)uq(0, t) + b(x0)u
q(x0, t)

≥
∫ l

−l
J(−y)(u(y, t)− u(0, t))dy

−
∫ l

−l
J(x0 − y)(u(y, t)− u(x0, t))dy

+pa(0)ξp−1(t)v(t)− qb(x0)η
q−1(t)v(t),
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where ξ(t) and η(t) are between u(0, t) and u(x0, t).
Hence

v′(t) ≥
∫ l

−l
(J(−y)− J(x0 − y))u(y, t)dy

+

∫ l

−l
(J(y − x0)− J(y))u(0, t)dy

−v(t) + pa(0)ξp−1(t)v(t)

−qb(x0)ηq−1(t)v(t)

=

∫ l

−l
(J(y − x0)− J(y))(u(0, t)− u(y, t))dy

−v(t) + pa(0)ξp−1(t)v(t)

−qb(x0)ηq−1(t)v(t)

≥ (−C1 + pa(0)ξp−1(t)− qb(x0)η
q−1(t))v(t),

for some positive constant.
Integrating the above inequality, we obtain

ln(v)(t)− ln(v)(t0)

≥
∫ t

t0
(−C1 +A2pξ

p−1(s)−B2qη
q−1(s))ds.

Remember that (T − t)1/(p−1)u(x0, t) → Cp, (T −
t)1/(p−1)u(0, t) → Cp, we have

lim
t→T

ξ(t)(T − t)
1

p−1 = lim
t→T

η(t)(T − t)
1

p−1 = Cp.

And this implies that∫ t

t0
(−C1 +A2pξ

p−1(s)−B2qη
q−1(s))ds

≥ A2p

∫ t

t0

Cp−1
p − δ1

T − s
ds

−B2q

∫ t

t0
(Cq−1

p + δ2)(T − s)
− q−1

p−1ds− C2.

p > q implies that such that (T − s)
− q−1

p−1 ≤ δ3(T −
s)−1 as s→ T for given δ3 > 0 . Hence∫ t

t0
(−C1 +A2pξ

p−1(s)−B2qη
q−1(s))ds

≥ A2p

∫ t

t0

Cp−1
p − δ

T − s
ds− C2

= −A2p(C
p−1
p − δ)ln(T − t)− C2

for some δ > 0.
Hence

v(t) ≥ C(T − t)−pA2(C
p−1
p −δ) = C(T − t)

A2pδ− p
p−1 .

Using this fact, we have

0 = lim
t→T

(T − t)1/(p−1)v(t)

≥ C lim
t→T

(T − t)
1

p−1
− p

p−1
+A2pδ

= +∞.

This contradiction proves our claim.
Step 2. We will show the only possible blowup

point is x = 0.
Remembering the transform (16), z(x, s) satisfies

zs = e−s
∫ l

−l
J(x− y)(z(y, s)− z(x, s))dy

− 1

p− 1
z + a(x)zp − b(x)e

q−p
p−1

s
zq.

Note that the blowup rate of u implies that z(x, s) ≤
C for every (x, s) ∈ [−l, l]× (−lnT,∞). Therefore,

zs(x, s) ≤ Ce−s − 1

p− 1
z(x, s) +A2z

p(x, s). (17)

From this we know that if there exists s0 such that
A2z

p(x, s0)− 1
p−1z(x, s0) < −Ce−s0 then z(x, s) →

0 as s→ ∞ (see Lemma 4.2 in [7]).
Moreover, if there exists s0 such that

A2z
p(x, s0) − 1

p−1z(x, s0) > Ce−s0 then z(x, s)

blows up in finite time s. This follows from Lemma
4.3 of [7]) using that

zs(x, s) ≥ −Ce−s − 1

p− 1
z(x, s) +A2z

p(x, s).

Thus if z(x, s) does not converge to zero and does
not blow up in finite time, then z(x, s) satisfies

Ce−s ≥ A2z
p(x, s)− 1

p− 1
z(x, s) ≥ −Ce−s.

Henceforth,

zp(x, s)− 1

p− 1
z(x, s) → 0 (s→ +∞).

As z(x, s) is continuous , bounded and does not go to
zero, we conclude that z(x, s) → Cp.

Now we could conclude that z(x, s) verifies
z(x, s) → 0(s→ +∞) , or z(x, s) → Cp(s→ +∞),
or z(x, s) blows up in finite time.

From step 1 we know for x ̸= 0, z(x, s) is
bounded and does not converge to Cp, so z(x, s) → 0
as s → +∞. Combined with inequality (17), we
could get

zs(x, s) ≤ Ce−s −
(

1

p− 1
− θ

)
z(x, s)
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for any θ > 0.
By a comparison argument as in the proof of The-

orem 4, it follows that

z(x, s) ≤ C1e
−s + C2e

−( 1
p−1

−θ)s
. (18)

Going back to the equation verified by z(x, t) we ob-
tain (

e
1

p−1
s
z(x, s)

)
s

≤ e
1

p−1
s
(
e−s

∫ l

−l
J(x− y)(z(y, s)− z(x, s))dy

+A2z
p(x, s)−B1e

q−p
p−1

s
zq(x, s)

)
.

Integrating we get

z(x, s)

≤ e
− 1

p−1
s
(
C1 +

∫ s

s0
e
− p−2

p−1
σ
(

∫ l

−l
J(x− y)(z(y, s)

−z(x, s))dy +A2e
σzp(x, s)

−B1e
q−1
p−1

σ
z(x, s)dσ)

)
.

On the other hand, (18) implies that eszp(x, s) →
0 as s→ ∞. Henceforth,

z(x, s) ≤ e
− 1

p−1
s
(
C1 + C2

∫ s

s0
e
− p−2

p−1
σ
dσ

)
.

Using that p > 2, one could have

z(x, s) ≤ C3e
− 1

p−1
s
.

Remembering the transform (16), we have

u(x, t) = e
1

p−1
s
z(x, s) ≤ c3.

And so our proof is complete. ⊓⊔

6 Numerical Experiments
At the end of this paper, we will use several numerical
examples to demonstrate our results about the loca-
tion of blowup points. For this purpose, we discretize
the problem in the spacial variable to obtain an ODE
system. For simplicity, we only consider one classi-
cal case in which a(x) = 1, b(x) = 1. Taking Ω =
[−4, 4] and −4 = x−N < · · · < xN = 4, N = 100,
we consider the following system

u
′
i(t) =

N∑
j=−N

J(xi − xj)(uj(t)− ui(t))

+(ui)
p(t)− k(ui)

q(t),

ui(0) = u0(xi).

Next we choose p = 3, q = 1, k = 1 and

J(z) =

{
1, , |z| ≤ 1/10,
0, , |z| > 1/10.

In Fig.1 we choose a non-symmetric initial con-
dition very large near the point x0 = 1, u0(x) =
1/4+100(1− |x− 1|)+. We observe that the blowup
set is localized in a neighborhood of x0 = 1.

Next we choose a symmetric initial condition
with a unique maximum at the origin, u0(x) = 16 −
x20. We observe that the solution blows up only at the
origin, Fig.2.

Fig.1 Evolution in time, non-symmetric datum.
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Fig.2 Evolution in time, symmetric datum.

7 Conclusion
This paper study the blowup properties of a nonlo-
cal diffusion equation with reaction and absorption
term. We established the complete classification of
the global existence or finite time blowup of the solu-
tion. Moreover, we obtained the precise blowup rate
for the blowup rate. Meanwhile, the localization of the
blowup set for usual domain Ω or the radial symmet-
ric domain, respectively. The results illustrated in the
previous sections show that this equation shares many
shares many blowup properties with corresponding lo-
cal diffusion equation, such as the blowup classifica-
tion. However, they have some difference, such as the
blowup rate and blowup set.

Acknowledgements: The research was supported by
the Key Scientific Research Foundation of Xihua Uni-
versity (No. Z0912611) and the Scientific Research
Found of Sichuan Provincial Education Department
(No.12ZA288). The authors thanks the anonymous
referees for their valuable suggestions on the initial
manuscript.

References:

[1] P. Bates and J. Han, The Neumann boundary
problem for a nonlocal Cahn-Hilliard equation,
J. Differential Equations. 212, 2005, pp. 235-
277.

[2] E. Chasseigne, M. Chaves and J. D. Rossi,
Asymptotic behavior for nonlocal diffusion
equations, J. Math. Pures Appl. 86, 2006,
pp.271-291.

[3] C. Cortazar and M. Elgueta, Nonlocal diffu-
sion problems that approximate the heat equa-
tion with Dirichlet boundary condition, Israel J.
Math. 170, 2009, pp.53-60.

[4] C. Cortazar, M. Elgueta, J. D. Rossi and
N. Wolanski, Boundary fluxes for nonlocal

diffusion, J.Differential Equations 234, 2007,
pp.360-390.

[5] P. Fife, Some nonclassical trends in parabolic
and parabolic-like evolutions, in: Trends in
Nonlinear Analysis, Springer, Berlin 2003.

[6] A.Friedman and B. Mcleod, Blowup of posi-
tive solutions of semilinear heat equations, Indi-
ana University Mathematics Journal. 34, 1985,
pp.425-447.

[7] P. Groisman and J. D. Rossi, Asymptotic be-
haviour for a numerical approximation of a
parabolic problem with blowing up solutions, J.
Comput. Appl. Math. 135, 2001, pp.135-155.

[8] J. Murray, Mathematical Biology, Springer, New
York 1993.

[9] C. Pao, Nonlinear Parabolic and Elliptic Equa-
tions, Plenum Press, New York 1992.

[10] S. Pan, W. Li and G. Lin, Travelling waves
fronts in nonlocal delayed reaction-diffusion
systems and applications, Z. Angew. Math.Phys.
60, 2009, pp.377-392.

[11] M. Perez-Llanos and J. D. Rossi, Blow-up for
a non-local diffusion problem with Neumann
boundary conditions and a reaction term, Non-
linear Analysis. 70, 2009, pp.1629-1640.

[12] J. Terra, N. Wolanski, Asymptotic behavior for a
nonlocal diffusion equation with absorption and
nonintegrable initial data. the supercritical case,
Proc. Amer. Math. Soc. 139, 2011, pp.1421-
1432.

WSEAS TRANSACTIONS on MATHEMATICS Yulan Wang, Jiqin Chen, Bin Zhou

E-ISSN: 2224-2880 746 Issue 7, Volume 12, July 2013




